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Abstract 

The probabilistic theory of the three-phase structure 
invariants for a pair of isomorphous structures 
[Hauptman (1982). Acta Cryst. A38, 289-294] is re- 
examined. The analysis leads to distributions capable 
of estimating cosine invariants in the full range of -1  
to +1. In particular, it is shown that heavy-atom 
substructure information can be incorporated easily 
into the distributions. The initial applications, using 
calculated diffraction data from the protein cyto- 
chrome C55o, MR ~--14 500, and its PtC142- derivative 
show that a remarkable increase in accuracy results 
from the use of the revised distributions, particularly 
after the incorporation of heavy-atom substructure 
information. Finally, it is shown that in the individual 
phase determinations the redundant cosine invariants 
play a role identical to that of the multiple isomor- 
phous derivatives and thus provide the basis for the 
solution of the phase problem in the single isomor- 
phous replacement case. 

1. Introduction 

Because of their obvious benefits, macromolecular 
phasing methods based on the single isomorphous 
replacement experiment (hereinafter referred to as 
SIR) have been investigated by several researchers. 
In particular, approaches based on the combination 
of direct methods and SIR have been investigated 
ever since the birth of direct methods as described 
by Fan Hai-fu, Han Fu-son, Qian Jin-zi and Yao 
Jia-xing (1984). More recently, the probabilistic 
(Hauptman, 1982) and algebraic (Karle, 1983) bases 
for the estimation of the three-phase structure 
invariants for a pair of isomorphous structures were 
introduced. The theoretical work and the initial appli- 
cations (Hauptman, Potter & Weeks, 1982; Karle, 
1983) clearly showed the promising potential of the 
fused direct-methods-SIR approach. In particular, 
Hauptman's formula, when applied to error-free 
diffraction data from the protein cytochrome C55o and 
a single heavy-atom derivative, proved capable of 
yielding several tens of thousands of reliably esti- 
mated three-phase invariants having the extreme 
values of 0 or 7r. It seemed natural to anticipate that 
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the standard and well tested machinery of direct 
methods - convergence mapping, multisolution 
approach, tangent refinement - could then be used 
in an automated fashion to determine the individual 
phases, thus solving the phase problem in the SIR 
case. 

In the applications, however, a few troublesome 
anomalies were detected. In particular, in the tangent 
refinement, it was observed that large numbers of 
invariants used in the individual phase determina- 
tions did not show a random error distribution. Sur- 
prisingly, the errors were strongly biased both in signs 
and magnitudes. While this problem appeared at first 
to impose severe limitations on the technique, it also 
suggested that the power of the fused direct-methods- 
SIR approach had not yet been fully exploited. 
Specifically, it suggested the presence of systematic 
errors in the procedure used. Once these errors were 
characterized and corrected, it could then be antici- 
pated that extremely accurate estimates of the 
invariants, and the individual phases, would be 
possible. 

In the present paper, the three-phase invariant con- 
ditional probability distribution of Hauptman (1982) 
is re-examined. The analysis not only identifies the 
source of the systematic errors but also shows that 
the errors can be eliminated by a simple alteration of 
the original distribution. Furthermore, the analysis 
shows that heavy-atom substructure information can 
be incorporated easily into the distributions. As a 
result of the alteration, cosine invariants in the full 
- 1  to +1 range can be obtained with unprecedented 
accuracy, especially after the incorporation of heavy- 
atom substructure information into the distribution. 

A two-step phasing procedure is proposed. In the 
first step, Hauptman's formula is used for the determi- 
nation of the heavy-atom substructure. In the second 
step, the additional information from the heavy-atom 
substructure is actively used to estimate the cosine 
invariants in the full range of -1  to +1. While the 
cosine invariants normally yield a twofold ambiguity 
in the phases, it is shown that the ambiguity is resolved 
by the redundancy of the invariants used in individual 
phase determinations. In fact, redundant cosine 
invariants play a role identical to that of the multiple 
isomorphous derivatives. 
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2. Theoretical basis 

2.1. The three-phase invariant conditional probability 
distributions for a pair of  isomorphous structures 

For each reciprocal-lattice vector H, there exist two 
normalized structure factors EH and Gn. For a triplet 
of reciprocal-lattice vectors H, K, L satisfying H + K + 
L = 0, there exist eight structure invariants 

0-)1 : ~ H  "3F ~0Kjr ~L ,  

0")3 : ~ H  -at- ~K + ~0L, 

0)4 = ~ H  "[- ~K "[- ~t)L, 
(1) 

to6 = ~H + ¢I~ + ~L, 

to7 = ~n + ~ + eL, 

t08 = 0H + g'K + ~L, 

where the ¢ 's  and the ~'s are the phases associated 
with the isomorphous pair of structures. 

Let 

[En[ = g~, [E~[ = g2, = g3; 

I O . I  = S l ,  I O~l = s2, I~..I = $3. (2) 
The conditional probability distributions of the three- 
phase structure invariants to~ given the six magnitudes 
IEn[, [EK[, IEL[, IGrl[, [GK[, [GLI in their first neighbor- 
hood are given by 

P,(O,IR~, R2, R3, S,, $2, $3)-~ (1/K,) exp (A, cos l],), 

i=  1 , 2 , . . . , 8 ,  (3) 

where 

K, = 2"n'Io( A,) (4) 

and Io is the modified Bessel function (Hauptman, 
1982). The A~ values are given by 

Ai = 2{f117"l R1R2R3 

+ f12[ZE1R1R2S3 + r22R~S2R3 + r23S1R2R3] 

Jr j[~3[ T31R1SES3 Jr T32SI R2S3 Jr T33SlS2R3] 

'[- ~4"i'4SI S2S3}, ( 5 )  

where the fl's are functions of the atomic scattering 
factors, and r =  C1C2C3 is obtained by comparing 
the ith structure factor associated with the coefficient 
of z with the ith structure factor associated with the 
invariant. If they are of the same type, i.e. both R or 
both S, then Ci = 1.0, i = 1, 2, 3. If one is of type R 
and the other of type S, then 

C, = II(2yR,S,)/Io(2yR,Si), i= 1, 2, 3, (6) 

where 11 and Io are the modified Bessel functions and 

Y - 1/211 Jr 4/(diffraction ratio) ~] (7) 

for the special case of a native protein and a heavy- 
atom derivative (Fortier, Weeks & Hauptman, 1984). 

The Bessel-function ratio I1 (2 yRiS~)/Io(2 yRiS~) is 
the expected value of the cosine of the phase differ- 
ence (@i- ~,) associated with the two magnitudes R~ 
and S~ (Sim, 1960). The equivalent cosine functions 
can therefore be substituted for the r functions in the 
distribution. Let 

~ i -  ~i  = -b t~i, ( 8 )  

then, for example, the conditional probability distri- 
bution of the to1 invariant can be written as 

P1(~1) = (1/K1) exp (A1 cos ~ ) ,  (9) 

where 

A1 cos ~1 = 2 cos ~1{fllR1R2R3+ f12[RIR2S3 cos t~ 3 

+ RIS2R 3 c o s  a2+S1R2R3 c o s  a l ]  

+ f13[R1S283 c o s  a 2 c o s  ~3  

+ S1R2S3 COS o~ 1 COS o~ 3 

+ SIS2R 3 c o s  o~ 1 c o s  0/2] 

-~ ~4SlS2S3 c o s  a I c o s  c~ 2 c o s  0~3}. (10) 

Similar expressions are obtained for each of the ~oi 
invariants. For the sake of simplicity, let us assume 
that a 2 = a 3 = 0  and [a l l#0 .  Equation (10) then 
becomes 

AI cos -Q1 = 2 cos ~I{fllRIR2R3 

+ ~2[ R,R2S3 + RI&R3] 

+ [~3R1S283} -b { c o s  (~'~1 + O~l) 

+cos (O1-  al)} xlfl2S~R2R3 

+ f13[ S~R2S3 + $1S2R3] + fl4SIS2S3}. (11 ) 

While the expected value of the phase difference 
~ / 1  - -  ~1 can be estimated, its sign is not known. In the 
form of the distribution shown in (11), both signs are 
considered equally probable and their contributions 
are averaged, as is done in the standard SIR technique 
(Blow & Rossmann, 1961). The consequence of 
averaging the two possible values is not only the 
restriction of cosine estimates to one or other of the 
extreme values, +1 or -1 ,  but also the introduction 
of the systematic errors mentioned in the Introduction. 

2.2. Estimating cosine invariants in the full range of 
-1  to +1 

We continue to consider the special case that a2 = 
Ot 3 = 0 and Jail # 0. Again the two possible signs of 
al are considered equally probable. However, instead 
of averaging out their contributions as in (11), the 
At cos/21 expression is calculated twice, assuming 
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Table 1. Examples of estimated three-phase cosine invariants with values different from -1  or + 1 for cytochrome 
C55o and its PtC12- derivative 

I n v a f i a n t  Calc.  T rue  

I~1 led led IG.I IG~I IGd I~.1 I~1 I~d ~pe* cos cos 
2.2 1.3 1"2 2.7 1"8 1"8 3"9 16"2 2"8 ~ ¢  0"69 0"68 
1"9 1"9 1"6 2"4 2"4 1"1 0"9 1"5 24"9 ~ -0"71 -0"69 
4"8 1"5 1"3 5"2 2"0 1"4 0"8 4"6 27"3 ~ 0 . 1 5  0"15 
1"9 1"9 1"7 1"3 2.4 1"0 17"6 0"9 3"7 ~ 0"59 0"61 
2-6 1"5 1"2 1-8 2"0 1"5 0"8 4"6 27"0 ~ -0"24 -0"26 

* The entry ~t~o¢, for example, means Cn+ ~K + eL, etc. 

first the one sign and then the other, i.e. 

A1 cos O1 = 2 cos 01{fllRIR2R3 

+ flE[R,R2S3 + R,S2R3] 

+ flaR1SES3} + 2 cos (O~ + a~){flES~R2R3 

+ 133[&R253 + &s2gd+ 134S, S~S~} 

and 

(12) 

A1 cos O1 = 2 cos 01{fllRIR2R3 

+ ~2[R~RES3 + RISER3] 

+ flaR1SES3} + 2 cos (f21- al){flESxREg3 

+ fla[Sxg2s3 + S~$2R3]+ fl4S1S2S3}. (13) 

It is easily seen that (12) and (13) can yield estimates 
of 12~ ranging over the full 0 to 360 ° interval. Further- 
more, it is clear that the two sign possibilities yield 
enantiomorphic estimates of O~, and thus determine 
uniquely the cosine of the invariant. 

In Table 1 a few examples are used to demonstrate 
that the mode of  the distribution can be significantly 
different from 0 or 180 °, even when the a magnitude 
is relatively small. Comparison of (11) with (12) and 
(13) shows that (11) does not yield the mode of the 
distribution, with its associated A value, but rather 
the A value at the 0 ° (or 180 °) angle, as depicted in 
Fig. 1. This explains the extremely good correlation 
between averaged A magnitudes and averaged error 
magnitudes obtained in the extensive calculations of 
Hauptman, Potter & Weeks (1982). Systematic devi- 
ations from the 0 ° (or 180 °) estimates are indeed 
accounted for in the original distribution. They result 
in a lowering of the A value or an increase in the 
variance. 

The advantages of using (12) or (13) over (11) are 
considerable. With (12) or (13) one can estimate the 
magnitude of the deviation from 0 ° (or 180 °) or, more 
specifically, one can estimate the value of the cosine 
invariant; with (11), the magnitudes of the systematic 
deviations cannot be estimated, rather they are buried 
in the A values. 

The Bessel-function ratio (6) can be used to esti- 
mate the magnitude of the phase difference, ai, 
appearing in (12) and (13) but the variance of the 
estimate may be large and thus the estimate must be 

used with caution. However, once the heavy-atom 
substructure has been determined, the cos ai value 
can be calculated from the structure-factor magni- 
tudes according to 

cos oti = (F2H, + F2, - F2,)/2FI, H, Fp,, (14) 

where Fen,, Fe, and Fn, are the ith-reflection struc- 
ture-factor magnitudes of the heavy-atom derivative, 
native and heavy-atom substructure, respectively. 

Equations (12) and (13) can be extended to the 
general case where lad, I =1, and 1 31 are all non zero. 
Again the magnitudes of the phase differences can 
be calculated while the signs are unknown. There 
exist, therefore, eight possible sign combinations. 
Calculation of the distribution for each of the eight 
sign combinations yields four enantiomorphic pairs 
of O1 estimates or four cosine-invariant estimates. 
The cosine invariant is thus estimated as the weighted 
average 

cos OAv = ~ Ai cos I2~/~ Ai, i = 1, 2, 3, 4, (15) 
i i 

M O D E  OF THE I 

DISTRIBUTION I 

USING EO (11) I 

I 

I 

I 
I 
I 
I 

I 

/ 
/ 

I I 

- I O O  - 50 

[,t! 

i | 
t I 
I 1 
I I 

I i 
I 

I 

1, 

1%1=4.8 IE~=4.4 IELI-I.m 

IGHI-52 IGKI=3.5 IGLI=I.3 
I%,-o.o I%,-o.o %.,.9.5 

- -  DISTRIBUTION FOR 0~L= +9.5  

- -  - - ,, O IL=-9 .5  

USING EQ (12) and  (13) 

O 50 IOO 1 5 0  

DEGREES 

Fig. 1. P robab i l i ty  d is t r ibut ions  o f  a th ree -phase  s t ructure  invar iant  
ca lcu la ted  using (11), (12) and  (13). 
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Table  2. Average magnitude of the error in estimated values of 25 000 three-phase cosine invariants for cytochrome 
C55o and its PtCI] -  derivative 

Number of invariantswith errors 
Average Average 

Top Protocol IAI [error I GE* 15 ° GE30 ° GE 45 ° GE60 ° GE 75 ° GE 90 ° 
1000 l 6.3 9.1 198 30 1 0 0 0 

2 6.1 16.5 543 66 0 0 0 0 
3 5.8 15.1 398 164 36 12 0 0 

5000 1 5.2 10.5 1222 246 17 0 0 0 
2 5.0 18.0 2821 734 20 8 8 8 
3 4.7 19.4 2449 1232 466 135 36 18 

10 000 1 4.6 12.0 2745 770 115 20 16 16 
2 4.4 18.9 5719 1900 111 31 24 24 
3 4.1 22.9 5598 3219 1409 496 145 49 

15 000 1 4.2 12-8 4576 1368 246 31 24 24 
2 4.0 19.5 8715 3274 262 44 25 24 
3 3.7 25.1 8900 5463 2649 1051 357 102 

20 000 1 3.9 13.4 6600 2069 397 40 24 24 
2 3.7 19.9 11745 4736 499 74 30 25 
3 3.4 27.0 12416 7949 4123 1772 635 205 

25 000 1 3.6 14.0 8706 2886 571 72 41 40 
2 3.5 20.5 14938 6283 810 131 53 42 
3 3.2 28.6 16030 10544 5813 2706 1013 328 

Protocol 1: Cosine estimates in the full -1 to +1 range (§ 2.2) were calculated using the calculated magnitudes of the phase differences (equation 14). 
Protocol 2: Cosine estimates in the full -1 to +1 range (§ 2.2) were calculated using the estimated magnitudes of the phase differences (equation 6). 
Protocol 3: Cosine estimates limited to the two extreme values +1 and -1 were calculated (equation 3-5). 

* GE = greater than or equal to. 

a n d  the  a s soc ia ted  A m a g n i t u d e  is t aken  as the  
average  o f  the  four  A m a g n i t u d e s  t imes a we igh t ing  
func t ion  w h o s e  value  d e p e n d s  on  the  m a x i m u m  
dif ference  b e t w e e n  the  average  cos ine  and  the  four  
i nd iv idua l  es t imates ,  i.e. 

AAv weighted = ¼ ~ Ai × cos (maxlOAv- O,I), 
i =  1,2, 3 ,4 .  (16) 

In  genera l ,  no t  all th ree  a ' s  are s ignif icantly different  
f rom zero. There fore ,  a l t h o u g h  four  poss ib le  cos ine  
invar iants  are es t imated ,  they  do  not  in mos t  cases 
differ m u c h  f rom one  ano ther .  Finally,  we no te  that  
the  p resen t  m e t h o d  is app l icab le ,  w h e t h e r  the  heavy  
a toms  fo rm a n o n - c e n t r o s y m m e t r i c  array or not.  

3. T h e  a p p l i c a t i o n s  

The  p r o c e d u r e  desc r ibed  in the  previous  sec t ion  for 
the  e s t ima t ion  o f  cos ine  invar iants  was tes ted  on  
the  p ro t e in  c y t o c h r o m e  C55o f rom Parococcus 
Denitrificans, m o l e c u l a r  we igh t  Mr = 14 500, space  
g roup  P212121, and  a s ingle PtC124 - i s o m o r p h o u s  
der ivat ive  ( T i m k o v i c h  & Dickerson ,  1973, 1976). This  
p ro te in  a n d  its PtC124 - der iva t ive  have b e e n  used  by 
o the r  workers  for  tests on  in tegra ted  d i r e c t - m e t h o d s  
- S I R  p h a s i n g  t e c h n i q u e s  ( H a u p t m a n ,  Pot ter  & 
Weeks ,  1982; Karle ,  1983) and  thus p rov ide  a g o o d  
basis for compar i sons .  C o o r d i n a t e s  were  o b t a i n e d  
f rom the Pro te in  Da ta  Bank  (Berns te in  et al., 1977) 
and  used  to ca lcula te  s t ructure  factors and  n o r m a l i z e d  
s t ructure  factors  to a r e so lu t ion  of  2.5 ~ (4159 E ' s  
and  4159 G's ) .  The phases  ~ c o r r e s p o n d i n g  to the 

1000 largest  IEl 's  o f  the  nat ive  p ro te in  and  the  phases  
~b c o r r e s p o n d i n g  to the  1000 largest  I Gl's of  the  
der ivat ive  were  used  to gene ra te  the  t h r ee -phase  struc- 
ture invar iants .  The  cos ine  invar iants  were  e s t ima ted  
acco rd ing  to th ree  p ro toco l s :*  

Protocol 1: Cos ine  es t imates  in the  full - 1  to +1 
range  (§ 2.2) were  ca lcu la ted  us ing the  ca lcu la ted  
m a g n i t u d e s  o f  the  phase  dif ferences  ( e q u a t i o n  14). 

Protocol 2: Cos ine  es t imates  in the  full - 1  to +1 
range (§ 2.2) were  ca lcu la ted  us ing the  e s t ima ted  mag-  
n i tudes  o f  the  phase  di f ferences  ( equa t ion  6). 

Protocol 3: Cos ine  es t imates  l imi ted  to the  two 
ex t reme  values  + 1 and  - 1 were  ca lcu la ted  ( equa t ions  
3-5).  

The  invar ian ts  were  r a n k e d  in d e s c e n d i n g  o rde r  o f  
A, and  the  25 000 largest  A invar iants  o b t a i n e d  in 
p ro toco l  3 (wh ich  are no t  necessar i ly  the  largest  
o b t a i n e d  in p ro toco l s  1 and  2) were  u sed  for  the  
c o m p a r i s o n  o f  the  th ree  protocols .  In Table  2 are 
s u m m a r i z e d  the  results o b t a i n e d  for these  25 000 
invariants .  These  results clearly conf i rm the  val id i ty  
o f  the theore t ica l  basis desc r ibed  in § 2.2. They  s h o w  
very conv inc ing ly  that  t ak ing  advan tage  o f  the  infor-  
ma t ion  that  b e c o m e s  avai lable ,  once  the  h e a v y - a t o m  
subs t ruc ture  has b e e n  d e t e r m i n e d ,  results in a con-  
s iderab le  ga in  in the  accuracy  o f  the  cos ine - invar ian t  
est imates.  The  average  error  over  the  25000  

* The calculations were done on a 16-bit PDP11/23 computer. The 
programs used were written by S. A. Potter, C. M. Weeks and G. 
D. Smith of the Medical Foundation of Buffalo, Inc., and adapted 
by N. J. Moore. 
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Table 3. A representative sample of 20 three-phase 
cosine invariants for cytochrome C55o and its PtCI~- 

derivative 

S e r i a l  no .  C a l c .  T r u e  
of invariant A cos cos IErrorl (o) 

100 7-02 0"96 0"98 4.8 
200 6-61 0"76 0.79 2"7 
300 6"42 0.96 0"98 4.8 
400 6.26 0"23 0.32 5"4 
500 6" 14 0-43 0"34 5"6 
600 • 6.07 0-90 0.93 4.3 
700 5.99 0-95 0-83 15.7 
800 5"93 0"99 1-00 8"1 
900 5.86 0"88 0-84 4"5 

1000 5"78 0"71 0"88 16"4 
1100 5.71 0-92 0-81 12"8 
1200 5;65 0"54 0-70 11"7 
1300 5"59 0-89 0"80 9"7 
1400 5"54 -0"98 -1-00  11"5 
1500 5.50 0"77 0.60 13-5 
1600 5.44 0.77 0.84 6.8 
1700 5"39 -0"95 -1"00 18.2 
1800 5.34 0"98 0.94 8"5 
1900 5-30 0.89 0"85 4"7 
2000 5.26 0.98 0"96 4.8 

Table 4. A representative.family of invariants with 
cosines estimated according to protocols 1 and 3 for 

cytochrome C55o and its PtCI 2- derivative 

levi = 1.5, lEvi = 1.2,  lEd = 1.1, IG~I = 1.9, IGd = 1.8, IGd = 1.8. 

P r o t o c o l  1 P r o t o c o l  3 

I n v a r i a n t  C a l c .  C a l c .  T r u e  
t y p e  A cos  A cos  cos  

~q~  6-85 0.54 4.40 1.00 0.59 
tp~p~ 6.88 0-54 4.33 1.00 0.56 
~p ~b~p 6.88 0.54 4.34 1.00 0.56 
tp~b~b 6.91 0.54 4.66 1.00 0.54 
~o~o 6-84 0.77 4.42 1.00 0.81 
~otp 6.88 0.77 4.75 1 "00 0.79 
~b~b~o 6.88 0.77 4 . 7 6  1.00 0.79 
~ b ~  6.91 0-77 5.10 1.00 0.77 

approach formulae (Karle, 1983, equation 12), again 
allowing cosine-invariant estimates different from - 1  
to + 1. Test calculations based on this approach have 
not been reported yet and thus cannot be compared 
with the present results. 

invariants, when estimated using protocol 1, has 
decreased by a factor of two, as compared to the 
average error of the same set of invariants estimated 
using protocol 3. More importantly, though, the num- 
ber ofinvariants for which calculated and true cosines 
differ by more than 45 ° decreased considerably, both 
when the true and when the estimated differences 
were used. Even when the phase differences are esti- 
mated using protocol 2, a substantial gain in accuracy 
is obtained. 

In this test calculation, protocol 1 yields errors 
smaller than 45 ° for 97.7% of the invariants and errors 
smaller than 30 ° for 88.5% of the invariants; the 
accuracy of these results is unprecedented. As expec- 
ted, the average A magnitude decreases from protocol 
1 to 3. As was explained in § 2.2, this is a result of 
the fact that protocol 3 determines the A value at the 
0 ° (or 180 °) angle rather than the A value at the mode 
of the distribution. Table 3 shows a representative 
sample of 20 three-phase structure invariants taken 
from the 2000 largest A-value invariants estimated 
using protocol 1. It is seen that accurate estimates 
can be made in the full range of - 1  to + 1. The ability 
to estimate reliably cosine invariants with values sig- 
nificantly different from - 1  or +1 obviates problems 
of enantiomorph discrimination. In addition, it is 
evident from Table 2 that the number of invariants 
determined with sufficient accuracy to be used in 
phasing procedures has by no means been exhausted. 
Therefore, we anticipate that the use of the heavy- 
atom substructure information will not only yield an 
increase in accuracy but also, and equally important, 
an increase in the number of accessible phases. It 
should be noted that heavy-atom substructure infor- 
mation can also be incorporated into the algebraic 

4. Proposed phasing procedure 

4.1. The role of the cosine invariants 

The role of the cosine invariants in the phasing of 
SIR data can be understood easily when their out- 
comes are compared to those obtained from a distri- 
bution capable of yielding only estimates of cosines 
having the extreme values of +1 or -1 .  For a triplet 
of reciprocal-lattice vectors H, K, L satisfying H + K + 
L =  0, there exist eight structure invariants formed 
between the ~ and ~b phases associated with the 
isomorphous pair of structures, and defined in (1). 
When the distribution limited to estimates of +1 or 
-1 is used, the invariants belonging to a common H, 
K, L family generally all have the same cosine estimate 
(+1 or -1 ) ,  although their A values may be different 
in magnitude as shown in Table 4. In fact the only 
cases for which members of a common family can 
have different estimates are those for which the A 
values are extremely small, and for that reason are 
of limited use in the determination of the individual 
phases. It can therefore be predicted that tangent 
refinement, when applied to these families of 
invariants, will tend to force native protein and 
derivative phases to be of equal value. This would 
not be a serious problem if the output phases were 
an average of their corresponding protein and deriva- 
tive phases. However, there is no guarantee that this 
will be the case. In particular, for a fixed enan- 
tiomorph, if a given invariant has an associated heavy- 
atom substructure invariant with a value of 0 or 180 °, 
then for every solution in the individual phases there 
exists a second solution whose phases are enan- 
tiomorphic to the first triplet of phases, with respect 
to the heavy-atom substructure invariant. 
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Let 9i and ¢i be the ith phases of the native and 
heavy-atom substructure, respectively, and let 

then 

If 

then 

and 

Thus 

9H : ~H +/~H,  

9, ,  = ¢1~ +/3K, 

9L : ~L "[- ~L, 

(17) 

9 H  "3t-9K-~-9L = bgH "3L bYK-~-~L-~-~H "3t-3K "~-3L. ( 1 8 )  

srn + sr~ + ~'L = 0 or 180 °, 

~ H " ~ - ~ K ' ~ ' ~ L = 0  o r  180 ° 

3 H  "~- ~ K  "3t- 3 L  = - - 3 H -  3 K -  3L" 

9 H  = ~ ' H -  3 H ,  

9 L  ~--- ~L -- 31. 

(19) 

is also a solution. Therefore, unless the basis set 
contains phases with values significantly different 
from those of the heavy-atom substructure, the 
tangent refinement will tend to converge to the heavy- 
atom substructure phases. This problem is well known 
in small-molecule applications and has been observed 
recently in macromolecule applications by Xu et al. 
(1984). It is in every way similar to the problem of 
loss of enantiomorph discrimination. It can be quite 
serious, since the distribution tends to yield large 
A-value-invariant estimates when the product (SH-  
RH)(SK-Rr,)(SL-RL) is large (Fortier, Weeks & 
Hauptman, 1984). These are precisely the invariants 
for which the associated heavy-atom substructure 
invariants are most likely to be 0 or 180 °. Clearly, this 
problem disappears when cosine estimates in the full 
range o f - 1  to +1 are used. 

described in § 3. We have 
calc. cos true cos 

COS (9179 -- 9444--  9641 -[- 180 °) -0"39 -0.38 
COS (9153 -- 9 1 7 9 -  9247) 0 " 8 0  0 " 8 2  

COS (9153 -- 9179 -- 9641 + 180 °) 0 . 8 0  0 . 6 0 .  

We seek to determine the value of 9179, assuming as 
known the values of the remaining phases in these 
three invariants: 

9153 = 44°  9247 = - 9 0 °  

9444 = - 5 8 °  9641 = - 9 0 ° .  

Using the first invariant, we have 

COS (9179 -- 9444 -- 9641 "~- 180 °) = -0"39 

9179 = 9444 ~L 9641 "~ 180 °+ 113 ° 
and 

9179 = 145 or 279 °. 

Using the second invariant gives 

COS (9153 -- 9179 --[- 9247) ~-" 0 " 8 0  

9179 = 9153 "q- 9247 -t- 37 ° 

and 
9179 = 351 or 277 °. 

Thus the ambiguity in the phase 9179 is resolved and 
9179 ~ 278 °. The third invariant serves to confirm the 
previous choice, as a third derivative would: 

COS (9153"[- 9179"~- 9641 -at- 180°)  = 0 " 8 0  

9179 = -- 9153 -- 9641 "+- 180  ° + 37 ° 

and 
9179 r'--- 263 or 189 °. 

Since the cosine invariants mimic the role played by 
the multiple isomorphous derivatives, the determina- 
tion of a phase by n invariant contributors is 
equivalent to the determination of a phase by n 
derivatives. As n normally tends to be large, very 
accurate estimates of the phases can be obtained, 
provided of course that the cosine invariants are 
determined with sufficient accuracy. 

4.2. Individual phase determination: analogy between 
the role o f  the cosine invariants and the role of  the 
multiple isomorphous derivatives. 

The cosine invariant yields enantiomorphic esti- 
mates of the invariant angle, O and -/2.  Therefore, 
when the invariant is used to determine the value of 
an individual phase, two possible values for the phase, 
differing by 20,  will be obtained. The ambiguity is 
easily resolved, however, by the redundancy of 
invariants used in the individual phase determina- 
tions, in a manner that is analogous to that of the 
multiple isomorphous replacement method. 

As an example let us consider the following 
invariants taken from the 25000 invariant set 

4.3. From the cosine invariants to the individual phases 

With cosine invariants in hand, it is clear that 
tangent refinement is no longer the best tool available 
for the determination of the individual phases. 
Rather, a least-squares analysis of cosine invariants 
(Karle & Hauptman, 1957; Hauptman, 1972) can be 
used to evaluate the individual phases. In particular, 
the value of an individual phase 9h is estimated as 
the value that minimizes the function 

9 = Y. Wk[COS (gh + 9k + 9-h-k)-- Cd21E Wk, 
k k 

where the Ck'S are the cosine estimates and the 
weights, Wk'S, are a function of the A values. Details 
of this procedure can be found in Hauptman (1972). 
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4.4. A two-step phasing procedure 

The initial application of Hauptman's distribution 
was carded to tangent refinement and computation 
of density maps, and showed that the technique yields 
accurate heavy-atom substructure information 
(Weeks, Potter, Smith, Hauptman & Fortier, 1984). 
Furthermore, the technique is applicable at fairly low 
resolution (4 ,~) and to multiple-site as well as single- 
site derivatives. On the other hand, the present work 
shows that the introduction of heavy-atom substruc- 
ture information in the distribution results in accurate 
cosine,invariant estimates in the full range of -1  to 
+1. A two-step phasing procedure naturally comes 
to mind. In the first step, Hauptman's distribution is 
used to determine the heavy-atom substructure. As 
was noted in § 4.1, tangent refinement, when applied 
to the invariants restricted to cosine estimates of +1 
or -1 ,  tends to converge to heavy-atom substructure 
phases. This can now be used to advantage, since the 
only information sought is that concerning the heavy- 
atom substructure. Once the heavy-atom substructure 
has been determined and refined, the magnitudes of 
the phase differences between the native and the 
derivative are calculated, and the cosine invariants 
are estimated according to the procedure described 
in § 2.2. The individual phases are then obtained by 
least-squares analysis of the cosine invariants. One 
advantage of the proposed two-step phasing pro- 
cedure is due to the cyclic nature of the calculations. 
In the estimation of the cosine invariants, the gener- 
ation of the three-phase invariants is by far the most 
lengthy section of the computation. In the scheme 
proposed, the invariants are generated in the first step 
only, and are then, in the second step, simply re- 
estimated. 

5. Concluding remarks 

The theoretical basis for the integration of direct 
methods and the SIR technique was introduced by 
Hauptman in 1982. Although the initial applications 
of this theory appeared very promising, several prob- 
lems were detected when the technique was carried 
to the determination of the individual phases, and 
these limitations proved serious. In the present work, 
it has been shown that rather simple alterations of 
the original distribution, combined with the use of 
heavy-atom substructure information, eliminate sys- 
tematic errors and, furthermore, yield estimates of 
the cosine invariants in the full -1  to +1 range. Of 
particular importance and interest is the analogy 
between multiple cosine invariants and multiple 
isomorphous derivatives in the determination of the 
individual phases. 

In their 1982 publication, Hauptman, Potter & 
Weeks profferred the view that a combination of 
direct methods and single isomorphous replacement 
might well make possible unique macromolecu- 

lar structure determination. The extension of 
Hauptman's theory presented in this paper not only 
supports this view but, in fact, provides the basis for 
the solution of the phase problem in the SIR case. 
Naturally, questions arise concerning effects of errors 
in the data and problems associated with structure- 
factor normalization. Any views on these matters are 
purely speculative at this point. However, it is cer- 
tainly not unrealistic to predict that these problems 
will not prove insurmountable. The history of the 
traditional direct-methods applications serves as an 
example. Although most of the theory presently used 
was developed by the mid 1960's, the methods did 
not reach their full power until some ten or fifteen 
years later. While the power of present-day direct 
methods is largely a result of the substantial amount 
of work and expertise that provided the link between 
theory and applications, it is also a consequence of 
the tremendous increase in the accuracy of diffraction 
data. Owing to recent technological advances, more 
and more accurate macromolecular diffraction data 
can now be expected. Perhaps this time, theoretical 
and experimental advances are better synchronized. 
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